
Document Succession Git LayoutEdition 1.1
Author date: 2024-02-20

Archive date: 2024-12-09
E. Castedo Ellerman (castedo@castedo.com)

Abstract
DOCUMENT TYPE: Living Technical Specification

A document succession is a distributed, correctable document that preserves document snap‐
shots as editions, which can be individually referenced. The Document Succession Git Layout
(DSGL) is a format for storing document successions within a Git object store. DSGL bridges two
related formats: the textual representation of Document Succession Identifiers (DSI) and the
storage format for document snapshots. An example of a snapshot format is the format for
Baseprint document snapshots; however, this specification does not define any specific format
for document snapshots.

Citation:
E. Castedo Ellerman (2024) "Document
Succession Git Layout"
https://perm.pub/
VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1

Copyright:
© 2024, Ellerman et al
CC BY License
This document is distributed under a
Creative Commons Attribution 4.0
International license.

Background
Websites like https://perm.pub use free open-source software, such as the Python package
Epijats, to process the formats of Document Succession Git Layout (DSGL), Document Succession
Identifiers (DSI), and Baseprint document snapshots. For the motivation behind these technolo‐
gies, refer to Why Publish Baseprint Document Successions. Tutorials and introductory materials
are also available at https://try.perm.pub/.

Scope
This document is a specification of DSGL for interoperability with the following reference imple‐
mentations:

the Python package Hidos version 1.3 [1] and

the Document Succession Highly Manual Toolkit [2].

This specification excludes potential DSGL features that are not implemented in any software.
The online forum https://baseprints.singlesource.pub is available for proposals of improvements
to this living specification and its reference implementations.

DSI in this specification refers to edition 2 of the Document Succession Identifier specification.

Signed Successions
This specification focuses on document successions that are digitally signed. Unsigned document
successions fall outside the scope of this edition of the DSGL specification. While unsigned
document successions may be useful for testing and learning, they are not essential for interop‐
erability.

•

•

perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
Additional formats and editions available online.

Baseprint snapshot swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291 1 of 5

https://orcid.org/0000-0002-5014-4809
https://orcid.org/0000-0002-5014-4809
https://orcid.org/0000-0002-5014-4809
mailto:castedo@castedo.com
https://perm.pub/1wFGhvmv8XZfPx0O5Hya2e9AyXo
https://creativecommons.org/licenses/by/4.0/
https://perm.pub
https://gitlab.com/perm.pub/epijats
https://perm.pub/1wFGhvmv8XZfPx0O5Hya2e9AyXo
https://perm.pub/1wFGhvmv8XZfPx0O5Hya2e9AyXo
https://perm.pub/wk1LzCaCSKkIvLAYObAvaoLNGPc
https://try.perm.pub
https://pypi.org/project/hidos/
https://manual.perm.pub
https://baseprints.singlesource.pub
https://perm.pub/1wFGhvmv8XZfPx0O5Hya2e9AyXo/2
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291

Ungarbled Successions
This specification defines DSGL for ungarbled recordings. These ungarbled recordings, which
have a simple and intuitive format, are most likely to interoperate. Reality and non-ideal circum‐
stances sometimes result in garbled recordings, which software may handle with varying degrees
of success. This specification assumes document successions are ungarbled, unless otherwise
noted.

Informal Description

Initial Git Commit
A document succession consists of a Git commit history with a single initial commit. The base DSI
of the document succession is the base64url (RFC 4648)[3] representation of the 20-byte binary
Git hash of the initial commit. An ungarbled document succession has a linear Git commit history.

Signatures
Every Git commit tree in DSGL contains a signed_succession subdirectory that includes an
allowed_signers file listing the public keys allowed to extend the document succession. Each
non-initial commit is signed with an SSH key listed in the allowed_signers files of all its
parent commits.

Example: Initial Git commit in DSGL.

https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/commit/
d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a

https://archive.softwareheritage.org/swh:
1:rev:d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a

Document Snapshot
A document snapshot in DSGL is a digital object that can be encoded as either a Git blob or a Git
tree. The contents of each document snapshot are stored in an entry named object within a
containing Git tree. The full path from the Git commit tree mirrors the edition number, with
slashes separating integers instead of periods. For example, the directory containing the
contents of a document snapshot for edition 2.1 would be stored in a Git tree at the path 2/1/
object.

Example: Git commit tree of document succession with edition 2.1.

https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/tree/
f174a4f4cc3076b0f46980878c4208cbfcdb990b

https://archive.softwareheritage.org/swh:1:dir:361534f2b‐
cf78e6312a32916469e4720c7c9bb6f

Additional formats and editions available online. perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1

Baseprint snapshot swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291 2 of 5

https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/commit/d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a
https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/commit/d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a
https://archive.softwareheritage.org/swh:1:rev:d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a
https://archive.softwareheritage.org/swh:1:rev:d7014686f9aff1765f3f1d0ee47c9ad9ef40c97a
https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/tree/f174a4f4cc3076b0f46980878c4208cbfcdb990b
https://github.com/document-succession/1wFGhvmv8XZfPx0O5Hya2e9AyXo/tree/f174a4f4cc3076b0f46980878c4208cbfcdb990b
https://archive.softwareheritage.org/swh:1:dir:361534f2bcf78e6312a32916469e4720c7c9bb6f
https://archive.softwareheritage.org/swh:1:dir:361534f2bcf78e6312a32916469e4720c7c9bb6f
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291

Formal Definitions

Criteria for a Document Succession in DSGL
Criterion: The data of a document succession are fully recorded by a connected graph of Git
commit records.

Criterion: There is only one initial Git commit (a commit without parents) in the graph of Git
commit records. The 20-byte binary hash of this initial Git commit is the hash used for the base
DSI of the document succession.

Criterion: All document snapshots are stored as a Git blob or Git tree with the name object (in
its containing Git tree).

Criterion: The Git tree containing an object entry is not the top-level Git commit tree and is
named with a positive integer.

Criterion: The full path to the containing tree of an object entry for a document snapshot
consists of non-negative integers separated by slashes. These non-negative integers correspond
to the non-negative integers separated by periods in the DSI.

Criterion: The document snapshot assigned to an edition number is the first Git blob or tree com‐
mitted to an object entry following the path corresponding to the edition number. Any sub‐
sequent object entries at this path do not change the DSI assignment.

Criteria for a Signed Document Succession in DSGL
Criterion: The Git tree of every Git commit record has an allowed_signers file within the
signed_succession directory.

Criterion: The allowed_signers file consists of zero or more lines of four fields separated by
space. The second field is namespaces="git", the third field is an OpenSSH compatible key
type, and the fourth field is a base64-encoded public key.

Criterion: Every commit with parents is signed with an SSH key with the public key listed in the
allowed_signers file of all parent commits.

Criteria for an Ungarbled Document Succession in DSGL
Criterion: The graph of Git commit records is linear.

Criterion: The initial commit is signed with an SSH key that is listed in the allowed_signers
file within the signed_succession directory.

Criterion: The first field of all lines in the allowed_signers files is the character *.

Criterion: The third field of all lines in the allowed_signers files is the key type ssh-ed25519.

Criterion: All paths of all Git commit trees match the EBNF grammar for DSGL Paths (definition
follows).

Criterion: Every object entry is only added once in the commit history.

Criterion: There are no two object entries whose paths correspond to edition numbers that are
above or below each other (for example, 1/object and 1/2/object are not both present). In
other words, if a Git tree directly contains an object entry, then it is the only direct entry in that
Git tree.

Additional formats and editions available online. perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1

Baseprint snapshot swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291 3 of 5

https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291

DSGL Paths in Extended Backus—Naur Form (EBNF)
The following grammar is expressed in ISO/IEC 14977 Extended Backus—Naur Form (EBNF)
extended further to allow an ellipsis (…) to denote a range of ASCII characters.

Discussion

Control of Document Successions
As long as authors of document successions maintain control over the allowed private SSH
signing keys, a signed document succession can be moved and distributed across any Git-com‐
patible servers, yet only the authors can extend the document succession with new editions. The
capability to extend a signed document succession hinges on control of allowed private SSH
signing keys, rather than control over specific accounts or servers.

Related Concepts
A Document Succession Identifier is an intrinsic identifier [4] [5] [6] of the initial Git commit.

Design Choice Rationales

Separation of Git History from Edition History

Representing the history of editions through means other than Git commit history is a deliberate
design choice. Git commit history records all Git actions, which can lead to inflexible and com‐
plicated non-linear histories. Software Heritage automatically preserves Git commits, increasing
the risk that a Git commit history could become an unintended complicated non-linear history.
Non-linear Git commit histories and merge commits might be useful in certain scenarios.

Separating edition history from Git commit history also allows for future enhancements, such as
retracting specific editions.

Use of Git Tree Paths Instead of Git Tags

In document successions, edition numbers are akin to software release versions, which are typic‐
ally identified using Git tags. However, this specification adopts a different approach. Edition
numbers are recorded with file paths in Git trees rather than Git tags. With this approach, a single
latest Git commit captures a complete record of a document succession. This means copying
document successions is as easy as copying Git branches. This is especially useful when consolid‐
ating records from multiple sources into a single Git repository.

In contrast, software projects, which often include release tags, are copied by cloning the entire
repository. Using Git tags for edition numbers would introduce the complexity of keeping a
branch and edition number tags in sync, thereby increasing the risk of problems during copying.

While branches in Git repositories are useful for managing document successions, branch names
do not constitute a part of the document succession record.

path = "signed_succession/allowed_signers" | snapshot ;
snapshot = { non_neg_int, "/" }, pos_int, "/object" ;
non_neg_int = "0" | pos_int ;
pos_int = pos_dec_digit, { dec_digit } ;
dec_digit = "0" | pos_dec_digit ;
pos_dec_digit = "1"…"9" ;

Additional formats and editions available online. perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1

Baseprint snapshot swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291 4 of 5

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291

1.

2.

3.

4.

5.

6.

7.

Acknowledgments
Thank you to Valentin Lorentz for raising questions about design choices and pointing out an
important shortcoming in how GPG digital signatures were used in the initial Git implementation
of the Hidos library (version 0.3) [7].

This document has been copyedited with AI using https://copyaid.it.

History
Copied Git storage specifics from edition 2.1 of the DSI specification.

References
Hidos 1.3. 2024. Available: https://archive.softwareheritage.org/swh:1:rev:
0c997b13a255be2a83f150371c9364a1217fa91a;origin=https://gitlab.com/perm.pub/hidos
Document succession highly manual toolkit manual. 2024. Available: https://
archive.softwareheritage.org/swh:
1:rev:f6da04dce5f53d88c4c324c1d2546110a8d42d8a;origin=https://gitlab.com/perm.pub/
dshmtm
Josefsson S. The Base16, Base32, and Base64 data encodings. RFC Editor; Internet Requests
for Comments; RFC Editor; 2006 Oct. doi:10.17487/RFC4648
Heritage S. Intrinsic and extrinsic identifiers. 2020. Available: https://web.archive.org/web/
20221019201056/https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-
identifiers/
Cosmo RD, Gruenpeter M, Zacchiroli S. Referencing Source Code Artifacts: A Separate
Concern in Software Citation. Computing in Science & Engineering. 2020;22: 33–43. doi:
10.1109/MCSE.2019.2963148
Di Cosmo R, Gruenpeter M, Zacchiroli S. Identifiers for Digital Objects: the Case of Software
Source Code Preservation. iPRES 2018 - 15th International Conference on Digital
Preservation. Boston, United States; 2018 Sep. pp. 1–9. Available: https://hal.archives-
ouvertes.fr/hal-01865790
Hidos 0.3. 2022. Available: https://archive.softwareheritage.org/swh:
1:rev:b963e5d2366724df6e8c34d864a7984ce4a2e1be;origin=https://gitlab.com/perm.pub/
hidos

•

Additional formats and editions available online. perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1

Baseprint snapshot swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291 5 of 5

https://copyaid.it
https://perm.pub/1wFGhvmv8XZfPx0O5Hya2e9AyXo/2.1
https://archive.softwareheritage.org/swh:1:rev:0c997b13a255be2a83f150371c9364a1217fa91a;origin=https://gitlab.com/perm.pub/hidos
https://archive.softwareheritage.org/swh:1:rev:0c997b13a255be2a83f150371c9364a1217fa91a;origin=https://gitlab.com/perm.pub/hidos
https://archive.softwareheritage.org/swh:1:rev:f6da04dce5f53d88c4c324c1d2546110a8d42d8a;origin=https://gitlab.com/perm.pub/dshmtm
https://archive.softwareheritage.org/swh:1:rev:f6da04dce5f53d88c4c324c1d2546110a8d42d8a;origin=https://gitlab.com/perm.pub/dshmtm
https://archive.softwareheritage.org/swh:1:rev:f6da04dce5f53d88c4c324c1d2546110a8d42d8a;origin=https://gitlab.com/perm.pub/dshmtm
https://archive.softwareheritage.org/swh:1:rev:f6da04dce5f53d88c4c324c1d2546110a8d42d8a;origin=https://gitlab.com/perm.pub/dshmtm
https://doi.org/10.17487/RFC4648
https://web.archive.org/web/20221019201056/https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://web.archive.org/web/20221019201056/https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://web.archive.org/web/20221019201056/https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://doi.org/10.1109/MCSE.2019.2963148
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-01865790
https://archive.softwareheritage.org/swh:1:rev:b963e5d2366724df6e8c34d864a7984ce4a2e1be;origin=https://gitlab.com/perm.pub/hidos
https://archive.softwareheritage.org/swh:1:rev:b963e5d2366724df6e8c34d864a7984ce4a2e1be;origin=https://gitlab.com/perm.pub/hidos
https://archive.softwareheritage.org/swh:1:rev:b963e5d2366724df6e8c34d864a7984ce4a2e1be;origin=https://gitlab.com/perm.pub/hidos
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://perm.pub/VGajCjaNP1Ugz58Khn1JWOEdMZ8/1.1
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291
https://archive.softwareheritage.org/swh:1:dir:683d72c2c17093ccfcb46cf648f1809d9c697291

	Document Succession Git Layout
	Abstract
	Background
	Scope
	Signed Successions
	Ungarbled Successions

	Informal Description
	Initial Git Commit
	Signatures
	Document Snapshot

	Formal Definitions
	Criteria for a Document Succession in DSGL
	Criteria for a Signed Document Succession in DSGL
	Criteria for an Ungarbled Document Succession in DSGL
	DSGL Paths in Extended Backus—Naur Form (EBNF)

	Discussion
	Control of Document Successions
	Related Concepts
	Design Choice Rationales
	Separation of Git History from Edition History
	Use of Git Tree Paths Instead of Git Tags

	Acknowledgments
	History
	References

